Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Suping Bai ${ }^{\mathbf{a}, \mathbf{b}}$ and Li Yang ${ }^{\mathrm{a} *}$
${ }^{\text {a }}$ National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Xinxiang Medical College, Xinxiang, Henan 453000, People's Republic of China
Correspondence e-mail: yang|@|zu.edu.cn

Key indicators

Single-crystal X-ray study
$T=286 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
$w R$ factor $=0.089$
Data-to-parameter ratio $=10.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

17β-Hydroxy-28-norolean-12-ene-3,16-dione

Molecules of the title compound, $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{3}$, are linked into chains by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the carbonyl and hydroxyl groups.

Received 21 February 2005
Accepted 7 March 2005
Online 18 March 2005

Comment

The title compound, (I), is a 28-noroleanane-type triterpene isolated from the medicinal plant Doellingeria scaber Thunb used for treatment of traumatic injury and snake bite. Compound (I) has been reported previously (Itokawa et al., 1981), but its structure, determined by spectroscopic methods, seems questionable. The crystal structure analysis of (I) was undertaken to establish the structure unambiguously.

(I)

An ORTEP-3 drawing (Farrugia, 1997) of the molecule is shown in Fig. 1. The X-ray analysis of (I) shows that the hydroxyl group with a β-orientation is located on C 17 , not on C18 as reported previously based on spectroscopic methods (Itokawa et al., 1981). The A / B and B / C ring junctions show trans fusion and the geometry of the rings is cis at the D / E ring junction. The bond lengths and angles in (I) have normal values (Allen et al., 1987), with the following average values $(\AA): \mathrm{Csp}^{3}-\mathrm{Csp}^{3}=1.539(3), \mathrm{Csp}{ }^{3}-\mathrm{Csp}^{2}=1.515(3)$, $\mathrm{Csp}{ }^{2}=\mathrm{Csp}^{2}=1.313(3), \mathrm{C}=\mathrm{O}=1.211$ (4) and $\mathrm{C}-\mathrm{O}=$ 1.432 (3). Rings B and E have slightly flattened chair conformations, with average torsion angles of 53.8 (3) and 52.6 (3) ${ }^{\circ}$, respectively. Rings A and D also adopt chair conformations, with average torsion angles of 47.9 (3) and $48.0(3)^{\circ}$, respectively. Ring C adopts an envelope conformation. The crystal packing is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the hydroxyl group and the C16-carbonyl group (Table 1). The hydrogen bonds link the molecules into chains along the b axis (Fig. 2).

Experimental

The dried and powdered roots of Doellingeria scaber (6.5 kg) were extracted three times with petroleum-methanol-diethyl ether (1:1:1) at room temperature. After evaporation under reduced pressure, the residue was separated by repeated silica gel (200-300 mesh) column

organic papers

chromatography and recrystallization, giving compound (I) (yield: 80 mg ; m.p. $505-506 \mathrm{~K}$; optical rotation: $[\alpha]_{D}^{25}+42^{\circ}$). Crystals suitable for X-ray diffraction measurements were obtained by slow evaporation of a solution of (I) in acetone at room temperature.

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{3}$
$M_{r}=440.64$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.273$ (1) \AA
$b=11.298$ (2) \AA
$c=30.344$ (5) \AA
$V=2493.4(7) \AA^{3}$
$Z=4$
$D_{x}=1.174 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens $P 4$ diffractometer ω scans
Absorption correction: none
3381 measured reflections
3124 independent reflections
1830 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.089$
$S=0.86$
3124 reflections
298 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation

Cell parameters from 28 reflections
$\theta=2.2-11.7^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=286$ (2) K
Block, colourless
$0.56 \times 0.38 \times 0.32 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=27.0^{\circ} \\
& h=0 \rightarrow 9 \\
& k=0 \rightarrow 14 \\
& l=-1 \rightarrow 38 \\
& 3 \text { standard reflections } \\
& \text { every } 97 \text { reflections } \\
& \text { intensity decay: } 2.8 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0406 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.13 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.13 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0099(7)
\end{aligned}
$$

Figure 1
An ORTEP-3 drawing (Farrugia, 1997) of (I), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The molecular packing of (I), viewed along the a axis. Dashed lines represent $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Only the H atoms involved in hydrogen bonding are shown.

This work was supported by the National Natural Science Foundation of China (No. 20172025).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Itokawa, H., Nakajima, H., Ikuta, A. \& Iitaka, Y. (1981). Phytochemistry, 20, 2539-2542.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Version 2.10b. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

